
BST 261: Data Science II

Lecture 12

Word embeddings

Recurrent Neural Networks (RNNs), and LSTMs

Santiago Romero Brufau

Harvard T.H. Chan School of Public Health

Spring 2

Administrivia

- Last lab, Friday, May 5th
- May 1st, Transformers
- Guest lecture next Wednesday, May 3rd: AI Safety
- Guest lecture May 8th:

2

3

4

5

Processing text data (better)

- Word embeddings

- RNNs to LSTMs

6

7

Working with
text data

8

Text Data

◎ Text data can be understood as either a sequence of characters or a
sequence of words
○ Most common to work at the level of words

◎ Like all other neural networks, we can’t simply input raw text - we must
vectorize the text: transform it into numeric tensors

◎ We can do this in multiple ways:
○ Segment text into words, and transform each word into a vector
○ Segment text into characters and transform each character into a

vector
○ Extract n-grams (overlapping groups of multiple consecutive words or

characters) of words or characters, and transform each n-gram into a
vector

9

Text Data

◎ The different units into which you break down text (words, characters, n-
grams) are called tokens, and the action of breaking text into tokens is
tokenization

◎ There are multiple ways to associate a vector with a token
○ One-hot encoding
○ Token embedding (or word embedding)

10

Tokenization

11

Tokens

Tokenization

N-grams

◎ Word n-grams are groups of N (or fewer) consecutive words that you can
extract from a sentence. The same concept may also be applied to characters
instead of words.

◎ For example, the sentence "Data science rocks my socks off!" can be
decomposed into a set of 3-grams:
○ {"Data", "Data science", "science", "science rocks", "Data science

rocks", "rocks", "rocks my", "science rocks my", "my", "my socks",
"socks", "rocks my socks", "off", "socks off", "my socks off"}

12

N-grams

◎ This set is called a bag of 3-grams, which refers to the fact that it is a set of
tokens, rather than a list or sequence: the tokens have no specific order

◎ This family of tokenization methods is called bag-of-words

◎ Order is not preserved, so the general structure of the sentence is lost

◎ Typically only used in shallow language-processing models

◎ Extracting n-grams is a form of feature engineering that deep learning models
do automatically in another way

13

One-hot Encoding

◎ Most common and most basic way to turn a token
into a vector

◎ We used this with the IMDB data set

1. Associate a unique integer index with every word

2. Then, turn the integer index i into a binary vector of size
N (the size of the vocabulary, or number of words in the
set)

◎ The vector is all 0s except for the ith entry, which is 1

14

One-hot Hashing

◎ A variant of one-hot encoding is the one-hot hashing trick

◎ Useful when the number of unique tokens is too large to handle
explicitly

◎ Instead of explicitly assigning an index to each word and keeping a
reference of these indices in a dictionary, you can hash words into
vectors of fixed size

15

One-hot Hashing

◎ Main advantage: saves memory and allows generation of tokens before
all of the data has been seen

◎ Main drawback: hash collisions
○ Two different words end up with the same hash
○ The likelihood of this decreases when the dimensionality of the

hashing space is much larger than the total number of unique
tokens being hashed

16

Word Embeddings

◎ Another common and powerful way to
associate a vector with a word is the use
of dense word vectors or word
embeddings

◎ Word embeddings are dense, low-
dimensional floating-point vectors

◎ Are learned from the data rather than
hard coded

◎ 256, 512 and 1024-dimensional word
embeddings are common

17

0
1

0.5

0.3

0.7

Word Embeddings

There are 2 ways to obtain word embeddings:

1. Learn word embeddings jointly with the main task you care about

Start with random word vectors and then learn word vectors in the same
way you learn the weights of the network

2. Use pre-trained word embeddings

Load into your model word embeddings that were precomputed using a
different machine-learning task than the one you’re trying to solve

18

Learning Word Embeddings

◎ It’s easy to simply associate a vector with a word randomly - but this
results in an embedding space without structure, and things like
synonyms that could be interchangeable will have completely different
embeddings

◎ This makes it difficult for a deep neural network to make sense of these
representations

19

Learning Word Embeddings

◎ It is better for similar words to have similar embeddings, and dissimilar
words to have dissimilar embeddings

◎ We can, for example, relate the L2 distance to the similarity of the words
with a smaller distance meaning the words are similar and bigger
distances indicating very different words

20

Word Embeddings

◎ Common examples of useful geometric transformations are “gender” and “plural”
vectors:
○ Adding a “female” vector to the vector “king” will result in the vector “queen"
○ Adding the “plural” vector to the vector “elephant” will result in the vector

“elephants”

◎ Is there a word-embedding space that would perfectly map human language and be
used in any natural-language processing task?
○ Maybe, but we haven’t discovered it yet
○ Very complicated - many different languages that are not isomorphic due to

specific cultures and contexts
○ A “good” word-embedding space depends on the task

21

Pre-trained Word Embeddings

◎ Similar to using pre-trained convolutional bases, we can use pre-trained word
embeddings

◎ Particularly useful when your sample size is small
◎ Load embedding vectors from a precomputed embedding space that is highly

structured with useful properties
○ Captures generic aspects of language structure

◎ These embeddings are typically computed using word-occurrence statistics:
○ Observations about what words co-occur in sentences or documents

◎ Various word-embedding methods exist:
○ Word2vec algorithm (developed by Tomas Mikolov at Google in 2013)
○ GloVe: Global Vectors for Word Representation (developed by researchers at

Stanford in 2014)
○ Both embeddings can be used in Keras

22

Word2vec

◎ Mikolov et al. introduce the word2vec
algorithm which is actually a collection of
different models
○ Continuous bag of words (CBOW)
○ Skip-gram with negative sample

(SGNS)
○ Key insight: simple linear model

trained on tons of data works much
better than fancy nonlinear model
that was difficult to train

23

https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf

GloVe

◎ GloVe: Global vectors for word
representation

◎ Developed by researchers at
Stanford in 2014

◎ Open-source project at Stanford
◎ Has similarities to other word

embedding methods
○ Word2vec is a “predictive”

model whereas GloVe is a
“count-based” model

https://nlp.stanford.edu/projects/glove/

24

https://www.aclweb.org/anthology/D14-1162
https://www.quora.com/How-is-GloVe-different-from-word2vec
https://www.quora.com/How-is-GloVe-different-from-word2vec
https://nlp.stanford.edu/projects/glove/

25

How to train embeddings

26

1 The

are

1 oak

tree

How to train embeddings

27

*2vec

28

cui2vec: embeddings for medical concepts

29

30

Recurrent Neural
Networks (RNNs)

31

32

Neural Networks

◎ So far we have seen:
○ Deep feedforward networks (MLPs)

◉ Map a fixed length vector to a fixed length scalar/vector
◉ Use case: classical machine learning

○ CNNS
◉ Map a fixed length matrix/tensor to a fixed length scalar/vector
◉ Use case: image recognition

◎ RNNs
○ Map a sequence of matrices/tensors to a scalar/vector
○ Map a sequence to a sequence
○ Use case: natural language processing (NLP)

33

NLP

◎ The challenge of language for computers:
○ Computers are built to process numbers

○ Language isn’t easily represented by numbers

○ How can we represent human language in a
computable fashion?

○ Applications: machine translation, text classification,
information retrieval, sentiment analysis and many
more

◉ You already saw one example: classifying IMDb
movie reviews as either positive or negative

34

MLPs RNNs

◎ RNNs are a natural extension of MLPs
◎ MLPs are “memoryless”, but often we need knowledge of the past

sequence of events to predict the future

35

Inputs Output Probability

MLP X y P(y|X)

RNN [x1, x2, x3, …, xt] y P(y|x1, x2, x3, …, xt)

MLPs RNNs

◎ Recall that the first hidden layer for an MLP

is given by h = f(XW + b) where f() is the

activation function and W is the weight matrix

in the hidden layer, b is the bias term,

and U is the weight matrix in the output layer

36

X

y

h

W

U

MLPs RNNs

◎ RNNs add the concept of “state” to traditional

neural networks

◎ To incorporate the notion of time we will

index the hidden layer with t and feed it Xt:

ht = f(XtW + b)

37

Xt

yt

ht

W

U

MLPs RNNs

◎ To incorporate information from the previous

state we will make the following modification:

ht = f(XtW + b) ht = f(XtW + ht-1U + b)

◎ This is equivalent to connecting the

hidden state to itself

38

Xt

yt

ht

W

U

Input at
time t

Hidden state
from previous
time point

RNN Backprop

◎ How do we backprop through something with

a loop?

◎ Have to backprop through depth and time

◎ This is similar to what we saw with MLPs,

but we aren’t going to go through it here

39

Xt

yt

ht

W

U

RNNs

40

Xt

yt

ht

W

U

“Unrolled” RNN

41

42

43

44

RNNs

◎ There are many ways to configure the input output mapping

45

RNNs

46

Ex:
Sentiment
Analysis

RNNs

47

Ex:
Translation,
automated
response

49

50

RNNs

◎ High-level takeaways:
○ RNNs provide a way to handle sequence data where the order of events is

important

○ “Simple” modification to MLP model

○ RNNs maintain a “state” that reflects current configuration of the “world”

51

RNNs

◎ High-level takeaways:
○ RNNs provide a natural way to “update” your beliefs about the world as

new information arrives

○ Really flexible and can model many different scenarios that get
weird/complicated quickly

○ CNNs = hard to understand but easy to implement; RNNs = easy to
understand but hard to implement

52

Applications

◎ Document and time series classification e.g. identifying the topic of an
article or the author of a book

◎ Time series comparisons e.g. estimating how closely related two
documents are

◎ Sentiment analysis
◎ Time series forecasting e.g. predicting weather (something that needs

major improvement for Boston...)
◎ Sequence-to-sequence learning e.g. decoding an English sentence into

Turkish

53

54

Problems with RNNs

55

Problems with RNNs

◎ Recall the formula for a generic RNN:

ht = f(XtW + ht-1U + b)

◎ What happens for really long sequences during backprop?
○ You multiply by the matrix U repeatedly
○ Largest eigenvalue > 1, gradient ∞ (explodes)
○ Largest eigenvalue < 1, gradient 0 (vanishes)

◎ This is known as the vanishing or exploding gradient problem

Fixing RNNs

◎ Sepp Hochreiter and Jürgen Schmidhuber proposed the long short term
memory (LSTM) hidden unit in 1997

◎ LSTMs selectively modify the inputs to produce “well-behaved” outputs,
fixing the gradient issues

◎ Can model very long sequences without having the gradients vanish or
explode

56

https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf

Fixing RNNs

◎ Gated Recurrent Network (GRU)
◎ Relatively new (2014), introduced by

Cho et al.
◎ Combined aspects of the LSTM

hidden unit
◎ Performance is on par with LSTM but

computationally more efficient
◎ We’ll dig into the details of these two

new units

57

https://arxiv.org/pdf/1406.1078v3.pdf

58

Long Short Term
Memory (LSTM)

59

RNN where the output h3 only depends on the input from X0 and X1

(The relevant information needed at h3 comes from X0 and X1)
The gap between relevant information and the place it is needed is small

An “unrolled” RNN

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

60

RNN where the output ht+1 is dependent on data inputs X0 and X1 that are too
far for the gradient to carry

This is an example of a long-term dependency - RNNs struggle to learn to
make connections when there are large gaps between the relevant
information and where it is needed

61

Simple, “vanilla” RNN:

RNN with LSTM units:

62

Simple, “vanilla” RNN:

RNN with LSTM units:

◎ LSTMs were explicitly designed to avoid
the long-term dependency problem

◎ The key to LSTMs is the ability to let
certain information through and carry it
until it is deemed no longer useful (which
may not happen)

◎ Information is carried through the
sequence in the cell state, which acts as
a conveyor belt or highway of
information (memory of the network)

◎ Information is kept or forgotten by
passing through gates (neural nets that
regulate the flow of information from one
time step to the next

63

Gates

◎ Gates control which information is let through

◎ They are composed of a sigmoid neural net layer
and a pointwise multiplication operation

◎ The sigmoid layer outputs numbers between 0
and 1, representing how much information
should be let through

◎ 1 = all information, 0 = no information

64

65

Step 1: Forget Gate - Determine how much of the previous state should
affect the current state based on the current observed input xt

Step 2: Update Cell State - First determine which values we will update and by
how much (gate it), then create a list of candidate values that we will add to the
current state (Ct) based on the current input (xt) and the previous output (ht-1).

66

Step 3: Execute the Update - update the cell state Ct-1 to Ct.

Step 4: Compute Unit Output - determine which parts of the cell state will be
used as unit output. Output is a filtered version of the cell state.

Why tanh?

◎ To overcome the vanishing/exploding
gradient problem

◎ Forces values to be between -1 and 1

67

LSTM Variants

◎ The steps we went through are for the standard, “normal” LSTM
◎ There are several variations - see blog post link from previous slide
◎ Encoder-decoder LSTMS led to the emergence of the

Attention Mechanism
○ Selectively concentrates on a few relevant things while ignoring others

◎ Think of an encoder as part of a neural net that reads in a sequence,
tries to summarize it (encode a context vector), and passes it to the
decoder

◎ The decoder translates the input from the encoder
◎ The Attention Mechanism overcame shortcomings of encoder-

decoder LSTMs and led to huge breakthroughs in NLP

68

69

IMDb Example

IMDb Example

Recall from a previous lecture:

The IMDb data set is a set of movie reviews that have been labeled as either positive or
negative, based on the text content of the reviews

◎ Training set: 25,000 either positive or negative movie reviews that have each
been turned into a vector of integers
○ We'll see how to actually do this later in the course
○ Each review can be of any length
○ Only the top 10,000 most frequently occurring words are kept i.e. rare words

are discarded
○ Each review includes a label: 0 = negative review and 1 = positive review

◎ Testing set: 25,000 either positive or negative movie reviews, similar to the
training set

70

https://www.kaggle.com/utathya/imdb-review-dataset

IMDb Example - Word Embeddings

◎ Keras has a function that enables learning word-embeddings: the
embedding layer

◎ Basically a dictionary that maps integer indices (that represent words) to
dense vectors

◎ It takes integers as input, looks up the integers in an internal dictionary,
and returns the associated vectors

Word index Embedding layer Corresponding word
vector

71

IMDb Example - Word Embeddings

◎ Input: 2D tensor of integers of shape (samples, sequence_length)

◎ Note that you need to select a sequence length that is the same for all
sequences

◎ If a sequence is shorter than the set sequence length, pad the remaining
entries with 0s

◎ If a sequence is longer than the set sequence length, truncate the
sequence

72

IMDb Example

73

Review 1: “This movie was great!”
Review 2: “This movie was so bad I quit after ten minutes.”
Review 3: “The setting is enchanting and captivating.”

[5, 6, 11, 32]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78]

Tokenization

IMDb Example

74

Review 1: “This movie was great!”
Review 2: “This movie was so bad I quit after ten minutes.”
Review 3: “The setting is enchanting and captivating.”

[5, 6, 11, 32]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78]

[5, 6, 11, 32, 0, 0, 0, 0, 0, 0]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78, 0, 0, 0, 0]

Tokenization

Padding

IMDb Example

75

Review 1: “This movie was great!”
Review 2: “This movie was so bad I quit after ten minutes.”
Review 3: “The setting is enchanting and captivating.”

[5, 6, 11, 32]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78]

[5, 6, 11, 32, 0, 0, 0, 0, 0, 0]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78, 0, 0, 0, 0]

Tokenization

Padding

Embedding

Each word is represented by a vector with 3 elements

IMDb Example

76

Review 1: “This movie was great!”
Review 2: “This movie was so bad I quit after ten minutes.”
Review 3: “The setting is enchanting and captivating.”

[5, 6, 11, 32]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78]

[5, 6, 11, 32, 0, 0, 0, 0, 0, 0]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78, 0, 0, 0, 0]

Tokenization

Padding

Embedding

Each word is represented by a vector with 3 elements. The
input is now a 3D tensor of shape (3, 10, 3)

“This” = [0.1, 0.4, 0.6] Missing word: [0, 0, 0]

Number of reviews Length of each
review

Depth of word embedding: how
many numbers represent a word

77

We need each review to be the same length to feed into the
network. This either “pads” reviews less than 20 words in
length with zeros, or truncates reviews longer than 20 words
to the first 20 words.

Colab notebook

https://drive.google.com/file/d/1ALYadLE6OZJch_Q7Jqu5w1GoafWZ8Pet/view?usp=sharing

78

Note that we aren’t fitting an
RNN yet - this is an MLP
network. We are first focusing
on how to use word
embeddings.

8-dimensional embeddings - one for
each word

Here we will use the pre-tokenized IMDB data packaged in Keras

Size of vocabulary

Length of sequence

IMDb Example - Word Embeddings

◎ We get an accuracy of about 75%
○ Not bad for only using the first 20 words of a review

◎ Here we are merely flattening the embedded sequences and training a single dense
layer on top
○ This treats each word in the input sequence separately, without considering

inter-word relationships and structure sentence (e.g. it would likely treat both
"this movie is shit" and "this movie is the shit" as being “negative” reviews).

○ It would be much better to add recurrent layers or 1D convolutional layers on top
of the embedded sequences to learn features that take into account each
sequence as a whole. That's what we will focus on next.

79

IMDb Example - Word Embeddings

◎ Now we’ll do the same thing but with pre-trained word embeddings
○ We’ll use GloVe embeddings

◎ We have to download both the raw IMDb reviews and GloVe embeddings
before running the code
○ I have also imported them into the Google Drive Data folder
○ IMDb reviews
○ GloVe embeddings

◎ Pre-trained embeddings are meant to perform well on small data sets -
let’s see how well our model does if we only train on 200 reviews

80

http://ai.stanford.edu/~amaas/data/sentiment/
https://nlp.stanford.edu/projects/glove/
https://drive.google.com/open?id=1vOGpKKRIkfTyj1-UjBy0An7K8IflPoWH
https://drive.google.com/open?id=1s2J_ahlrAEDaj9d-OttLFRHCNnBIcRqA

81

82

83

The model quickly starts
overfitting, unsurprisingly
given the small number of
training samples.
Validation accuracy has
high variance for
the same reason, but
seems to reach high 50s.

The test set accuracy is a
terrible 56%.

◎ We’ll get into more complicated RNNs, but
for now let’s build a simple RNN and run it
on the IMDb data set

◎ SimpleRNN is a layer that can be run in two
different modes
○ It can return either the full

sequences of successive outputs for
each timestep (a 3D tensor of shape
(batch_size, timesteps,
output_features)),

○ Or it can return only the last output
for each input sequence (a 2D tensor
of shape (batch_size,
output_features)).

◎ These two modes are controlled by the
return_sequences constructor argument.

84

◎ We’ll get into more complicated RNNs, but
for now let’s build a simple RNN and run it
on the IMDb data set

◎ SimpleRNN is a layer that can be run in two
different modes
○ It can return either the full

sequences of successive outputs for
each timestep (a 3D tensor of shape
(batch_size, timesteps,
output_features)),

○ Or it can return only the last output
for each input sequence (a 2D tensor
of shape (batch_size,
output_features)).

◎ These two modes are controlled by the
return_sequences constructor argument.

85

◎ We’ll get into more complicated RNNs, but
for now let’s build a simple RNN and run it
on the IMDb data set

◎ SimpleRNN is a layer that can be run in two
different modes
○ It can return either the full

sequences of successive outputs for
each timestep (a 3D tensor of shape
(batch_size, timesteps,
output_features)),

○ Or it can return only the last output
for each input sequence (a 2D tensor
of shape (batch_size,
output_features)).

◎ These two modes are controlled by the
return_sequences constructor argument.

86

IMDb Example - Simple RNN

It is sometimes useful to stack
several recurrent layers one after
the other in order to increase the
representational power of a
network. In such a setup, you
have to get all intermediate
layers to return full sequences.

87

IMDb Example - Simple RNN

88

89

As a reminder, in lecture 3, our very first
naive approach to this very dataset got us
to 88% test accuracy. Our small recurrent
network doesn't perform very well at all
compared to this baseline (only up to 85%
validation accuracy). Part of the problem is
that our inputs only consider the first 100
words rather the full sequences -- hence
our RNN has access to less information
than our earlier baseline model.

The remainder of the problem is simply
that SimpleRNN isn't very good at
processing long sequences, like text.
Other types of recurrent layers perform
much better. We’ll talk about these next.

	Slide 1: BST 261: Data Science II Lecture 12 Word embeddings Recurrent Neural Networks (RNNs), and LSTMs Santiago Romero Brufau Harvard T.H. Chan School of Public Health Spring 2
	Slide 2: Administrivia
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Processing text data (better)
	Slide 7
	Slide 8
	Slide 9: Text Data
	Slide 10: Text Data
	Slide 11: Tokenization
	Slide 12: N-grams
	Slide 13: N-grams
	Slide 14: One-hot Encoding
	Slide 15: One-hot Hashing
	Slide 16: One-hot Hashing
	Slide 17: Word Embeddings
	Slide 18: Word Embeddings
	Slide 19: Learning Word Embeddings
	Slide 20: Learning Word Embeddings
	Slide 21: Word Embeddings
	Slide 22: Pre-trained Word Embeddings
	Slide 23: Word2vec
	Slide 24: GloVe
	Slide 25
	Slide 26: How to train embeddings
	Slide 27: How to train embeddings
	Slide 28: *2vec
	Slide 29: cui2vec: embeddings for medical concepts
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Neural Networks
	Slide 34: NLP
	Slide 35: MLPs RNNs
	Slide 36: MLPs RNNs
	Slide 37: MLPs RNNs
	Slide 38: MLPs RNNs
	Slide 39: RNN Backprop
	Slide 40: RNNs
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: RNNs
	Slide 46: RNNs
	Slide 47: RNNs
	Slide 49
	Slide 50
	Slide 51: RNNs
	Slide 52: RNNs
	Slide 53: Applications
	Slide 54
	Slide 55: Problems with RNNs
	Slide 56: Fixing RNNs
	Slide 57: Fixing RNNs
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Gates
	Slide 65
	Slide 66
	Slide 67: Why tanh?
	Slide 68: LSTM Variants
	Slide 69
	Slide 70: IMDb Example
	Slide 71: IMDb Example - Word Embeddings
	Slide 72: IMDb Example - Word Embeddings
	Slide 73: IMDb Example
	Slide 74: IMDb Example
	Slide 75: IMDb Example
	Slide 76: IMDb Example
	Slide 77
	Slide 78
	Slide 79: IMDb Example - Word Embeddings
	Slide 80: IMDb Example - Word Embeddings
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87: IMDb Example - Simple RNN
	Slide 88: IMDb Example - Simple RNN
	Slide 89

