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Administrivia

- Last lab, Friday, May 5th
- May 1st, Transformers
- Guest lecture next Wednesday, May 3rd: AI Safety
- Guest lecture May 8th: 
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Processing text data (better)

- Word embeddings

- RNNs to LSTMs
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Working with 
text data
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Text Data

◎ Text data can be understood as either a sequence of characters or a 
sequence of words
○ Most common to work at the level of words

◎ Like all other neural networks, we can’t simply input raw text - we must 
vectorize the text: transform it into numeric tensors

◎ We can do this in multiple ways:
○ Segment text into words, and transform each word into a vector
○ Segment text into characters and transform each character into a 

vector
○ Extract n-grams (overlapping groups of multiple consecutive words or 

characters) of words or characters, and transform each n-gram into a 
vector
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Text Data

◎ The different units into which you break down text (words, characters, n-
grams) are called tokens, and the action of breaking text into tokens is 
tokenization

◎ There are multiple ways to associate a vector with a token
○ One-hot encoding
○ Token embedding (or word embedding)
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Tokenization
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N-grams

◎ Word n-grams are groups of N (or fewer) consecutive words that you can 
extract from a sentence. The same concept may also be applied to characters 
instead of words.

◎ For example, the sentence "Data science rocks my socks off!" can be 
decomposed into a set of 3-grams:
○ {"Data", "Data science", "science", "science rocks", "Data science 

rocks", "rocks", "rocks my", "science rocks my", "my", "my socks", 
"socks", "rocks my socks", "off", "socks off", "my socks off"}
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N-grams

◎ This set is called a bag of 3-grams, which refers to the fact that it is a set of 
tokens, rather than a list or sequence: the tokens have no specific order

◎ This family of tokenization methods is called bag-of-words

◎ Order is not preserved, so the general structure of the sentence is lost

◎ Typically only used in shallow language-processing models

◎ Extracting n-grams is a form of feature engineering that deep learning models 
do automatically in another way
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One-hot Encoding

◎ Most common and most basic way to turn a token 
into a vector

◎ We used this with the IMDB data set

1. Associate a unique integer index with every word

2. Then, turn the integer index i into a binary vector of size 
N (the size of the vocabulary, or number of words in the 
set)

◎ The vector is all 0s except for the ith entry, which is 1
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One-hot Hashing

◎ A variant of one-hot encoding is the one-hot hashing trick

◎ Useful when the number of unique tokens is too large to handle 
explicitly

◎ Instead of explicitly assigning an index to each word and keeping a 
reference of these indices in a dictionary, you can hash words into 
vectors of fixed size
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One-hot Hashing

◎ Main advantage: saves memory and allows generation of tokens before 
all of the data has been seen

◎ Main drawback: hash collisions
○ Two different words end up with the same hash
○ The likelihood of this decreases when the dimensionality of the 

hashing space is much larger than the total number of unique 
tokens being hashed
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Word Embeddings

◎ Another common and powerful way to 
associate a vector with a word is the use 
of dense word vectors or word 
embeddings

◎ Word embeddings are dense, low-
dimensional floating-point vectors

◎ Are learned from the data rather than 
hard coded

◎ 256, 512 and 1024-dimensional word 
embeddings are common
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Word Embeddings

There are 2 ways to obtain word embeddings:

1. Learn word embeddings jointly with the main task you care about

Start with random word vectors and then learn word vectors in the same 
way you learn the weights of the network

2. Use pre-trained word embeddings

Load into your model word embeddings that were precomputed using a 
different machine-learning task than the one you’re trying to solve
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Learning Word Embeddings

◎ It’s easy to simply associate a vector with a word randomly - but this 
results in an embedding space without structure, and things like 
synonyms that could be interchangeable will have completely different 
embeddings

◎ This makes it difficult for a deep neural network to make sense of these 
representations

19



Learning Word Embeddings

◎ It is better for similar words to have similar embeddings, and dissimilar 
words to have dissimilar embeddings

◎ We can, for example, relate the L2 distance to the similarity of the words 
with a smaller distance meaning the words are similar and bigger 
distances indicating very different words
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Word Embeddings

◎ Common examples of useful geometric transformations are “gender” and “plural” 
vectors:
○ Adding a “female” vector to the vector “king” will result in the vector “queen"
○ Adding the “plural” vector to the vector “elephant” will result in the vector 

“elephants”

◎ Is there a word-embedding space that would perfectly map human language and be 
used in any natural-language processing task?
○ Maybe, but we haven’t discovered it yet
○ Very complicated - many different languages that are not isomorphic due to 

specific cultures and contexts
○ A “good” word-embedding space depends on the task
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Pre-trained Word Embeddings

◎ Similar to using pre-trained convolutional bases, we can use pre-trained word 
embeddings

◎ Particularly useful when your sample size is small
◎ Load embedding vectors from a precomputed embedding space that is highly 

structured with useful properties
○ Captures generic aspects of language structure

◎ These embeddings are typically computed using word-occurrence statistics:
○ Observations about what words co-occur in sentences or documents

◎ Various word-embedding methods exist:
○ Word2vec algorithm (developed by Tomas Mikolov at Google in 2013)
○ GloVe: Global Vectors for Word Representation (developed by researchers at 

Stanford in 2014)
○ Both embeddings can be used in Keras
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Word2vec

◎ Mikolov et al. introduce the word2vec 
algorithm which is actually a collection of 
different models
○ Continuous bag of words (CBOW)
○ Skip-gram with negative sample 

(SGNS)
○ Key insight: simple linear model 

trained on tons of data works much 
better than fancy nonlinear model 
that was difficult to train
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https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf


GloVe

◎ GloVe: Global vectors for word 
representation

◎ Developed by researchers at 
Stanford in 2014

◎ Open-source project at Stanford
◎ Has similarities to other word 

embedding methods
○ Word2vec is a “predictive” 

model whereas GloVe is a 
“count-based” model

https://nlp.stanford.edu/projects/glove/
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https://www.aclweb.org/anthology/D14-1162
https://www.quora.com/How-is-GloVe-different-from-word2vec
https://www.quora.com/How-is-GloVe-different-from-word2vec
https://nlp.stanford.edu/projects/glove/
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How to train embeddings
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How to train embeddings
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*2vec
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cui2vec: embeddings for medical concepts
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Recurrent Neural 
Networks (RNNs)
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Neural Networks

◎ So far we have seen:
○ Deep feedforward networks (MLPs)

◉ Map a fixed length vector to a fixed length scalar/vector
◉ Use case: classical machine learning

○ CNNS
◉ Map a fixed length matrix/tensor to a fixed length scalar/vector
◉ Use case: image recognition

◎ RNNs
○ Map a sequence of matrices/tensors to a scalar/vector
○ Map a sequence to a sequence
○ Use case: natural language processing (NLP)
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NLP

◎ The challenge of language for computers:
○ Computers are built to process numbers

○ Language isn’t easily represented by numbers

○ How can we represent human language in a 
computable fashion?

○ Applications: machine translation, text classification, 
information retrieval, sentiment analysis and many 
more

◉ You already saw one example: classifying IMDb 
movie reviews as either positive or negative
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MLPs RNNs 

◎ RNNs are a natural extension of MLPs
◎ MLPs are “memoryless”, but often we need knowledge of the past 

sequence of events to predict the future
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Inputs Output Probability

MLP X y P(y|X)

RNN [x1, x2, x3, …, xt] y P(y|x1, x2, x3, …, xt)



MLPs        RNNs 

◎ Recall that the first hidden layer for an MLP

is given by h = f(XW + b) where f() is the 

activation function and W is the weight matrix 

in the hidden layer, b is the bias term, 

and U is the weight matrix  in the output layer
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MLPs        RNNs 

◎ RNNs add the concept of “state” to traditional

neural networks

◎ To incorporate the notion of time we will

index the hidden layer with t and feed it Xt: 

ht = f(XtW + b)
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MLPs        RNNs 

◎ To incorporate information from the previous 

state we will make the following modification:

ht = f(XtW + b) ht = f(XtW + ht-1U + b)

◎ This is equivalent to connecting the 

hidden state to itself
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RNN Backprop

◎ How do we backprop through something with

a loop?

◎ Have to backprop through depth and time

◎ This is similar to what we saw with MLPs, 

but we aren’t going to go through it here
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RNNs

40

Xt

yt

ht

W

U

“Unrolled” RNN



41



42



43



44



RNNs

◎ There are many ways to configure the input        output mapping
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RNNs
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Ex: 
Sentiment 
Analysis



RNNs
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Ex: 
Translation, 
automated 
response
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RNNs

◎ High-level takeaways:
○ RNNs provide a way to handle sequence data where the order of events is 

important

○ “Simple” modification to MLP model

○ RNNs maintain a “state” that reflects current configuration of the “world”
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RNNs

◎ High-level takeaways:
○ RNNs provide a natural way to “update” your beliefs about the world as 

new information arrives

○ Really flexible and can model many different scenarios that get 
weird/complicated quickly

○ CNNs = hard to understand but easy to implement; RNNs = easy to 
understand but hard to implement
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Applications

◎ Document and time series classification e.g. identifying the topic of an 
article or the author of a book

◎ Time series comparisons e.g. estimating how closely related two 
documents are

◎ Sentiment analysis
◎ Time series forecasting e.g. predicting weather (something that needs 

major improvement for Boston...)
◎ Sequence-to-sequence learning e.g. decoding an English sentence into 

Turkish
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Problems with RNNs
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Problems with RNNs

◎ Recall the formula for a generic RNN:

ht = f(XtW + ht-1U + b)

◎ What happens for really long sequences during backprop?
○ You multiply by the matrix U repeatedly
○ Largest eigenvalue > 1, gradient ∞ (explodes)
○ Largest eigenvalue < 1, gradient 0 (vanishes)

◎ This is known as the vanishing or exploding gradient problem



Fixing RNNs

◎ Sepp Hochreiter and Jürgen Schmidhuber proposed the long short term 
memory (LSTM) hidden unit in 1997

◎ LSTMs selectively modify the inputs to produce “well-behaved” outputs, 
fixing the gradient issues

◎ Can model very long sequences without having the gradients vanish or 
explode
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https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf


Fixing RNNs

◎ Gated Recurrent Network (GRU)
◎ Relatively new (2014), introduced by 

Cho et al.
◎ Combined aspects of the LSTM 

hidden unit
◎ Performance is on par with LSTM but 

computationally more efficient
◎ We’ll dig into the details of these two 

new units
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https://arxiv.org/pdf/1406.1078v3.pdf
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Long Short Term 
Memory (LSTM)
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RNN where the output h3 only depends on the input from X0 and X1 

(The relevant information needed at h3 comes from X0 and X1)
The gap between relevant information and the place it is needed is small

An “unrolled” RNN

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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RNN where the output ht+1 is dependent on data inputs X0 and X1 that are too 
far for the gradient to carry

This is an example of a long-term dependency - RNNs struggle to learn to 
make connections when there are large gaps between the relevant 
information and where it is needed
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Simple, “vanilla” RNN:

RNN with LSTM units:
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Simple, “vanilla” RNN:

RNN with LSTM units:



◎ LSTMs were explicitly designed to avoid 
the long-term dependency problem

◎ The key to LSTMs is the ability to let 
certain information through and carry it 
until it is deemed no longer useful (which 
may not happen)

◎ Information is carried through the 
sequence in the cell state, which acts as 
a conveyor belt or highway of 
information (memory of the network)

◎ Information is kept or forgotten by 
passing through gates (neural nets that 
regulate the flow of information from one 
time step to the next

63



Gates

◎ Gates control which information is let through

◎ They are composed of a sigmoid neural net layer 
and a pointwise multiplication operation

◎ The sigmoid layer outputs numbers between 0 
and 1, representing how much information 
should be let through

◎ 1 = all information, 0 = no information
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Step 1: Forget Gate - Determine how much of the previous state should 
affect the current state based on the current observed input xt

Step 2: Update Cell State - First determine which values we will update and by 
how much (gate it), then create a list of candidate values that we will add to the 
current state (Ct) based on the current input (xt) and the previous output (ht-1).
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Step 3: Execute the Update - update the cell state Ct-1 to Ct.

Step 4: Compute Unit Output - determine which parts of the cell state will be 
used as unit output. Output is a filtered version of the cell state.



Why tanh?

◎ To overcome the vanishing/exploding 
gradient problem

◎ Forces values to be between -1 and 1
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LSTM Variants

◎ The steps we went through are for the standard, “normal” LSTM
◎ There are several variations - see blog post link from previous slide
◎ Encoder-decoder LSTMS led to the emergence of the 

Attention Mechanism
○ Selectively concentrates on a few relevant things while ignoring others

◎ Think of an encoder as part of a neural net that reads in a sequence, 
tries to summarize it (encode a context vector), and passes it to the 
decoder

◎ The decoder translates the input from the encoder
◎ The Attention Mechanism overcame shortcomings of encoder-

decoder LSTMs and led to huge breakthroughs in NLP
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IMDb Example

Recall from a previous lecture:

The IMDb data set is a set of movie reviews that have been labeled as either positive or 
negative, based on the text content of the reviews

◎ Training set: 25,000 either positive or negative movie reviews that have each 
been turned into a vector of integers
○ We'll see how to actually do this later in the course
○ Each review can be of any length
○ Only the top 10,000 most frequently occurring words are kept i.e. rare words 

are discarded
○ Each review includes a label: 0 = negative review and 1 = positive review

◎ Testing set: 25,000 either positive or negative movie reviews, similar to the 
training set
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https://www.kaggle.com/utathya/imdb-review-dataset


IMDb Example - Word Embeddings

◎ Keras has a function that enables learning word-embeddings: the 
embedding layer

◎ Basically a dictionary that maps integer indices (that represent words) to 
dense vectors

◎ It takes integers as input, looks up the integers in an internal dictionary, 
and returns the associated vectors

Word index  Embedding layer  Corresponding word 
vector
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IMDb Example - Word Embeddings

◎ Input: 2D tensor of integers of shape (samples, sequence_length)

◎ Note that you need to select a sequence length that is the same for all 
sequences

◎ If a sequence is shorter than the set sequence length, pad the remaining 
entries with 0s

◎ If a sequence is longer than the set sequence length, truncate the 
sequence
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IMDb Example

73

Review 1: “This movie was great!”
Review 2: “This movie was so bad I quit after ten minutes.”
Review 3: “The setting is enchanting and captivating.”

[5, 6, 11, 32]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78]

Tokenization



IMDb Example
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Review 1: “This movie was great!”
Review 2: “This movie was so bad I quit after ten minutes.”
Review 3: “The setting is enchanting and captivating.”

[5, 6, 11, 32]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78]

[5, 6, 11, 32, 0, 0, 0, 0, 0, 0]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78, 0, 0, 0, 0]

Tokenization

Padding



IMDb Example
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Review 1: “This movie was great!”
Review 2: “This movie was so bad I quit after ten minutes.”
Review 3: “The setting is enchanting and captivating.”

[5, 6, 11, 32]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78]

[5, 6, 11, 32, 0, 0, 0, 0, 0, 0]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78, 0, 0, 0, 0]

Tokenization

Padding

Embedding

Each word is represented by a vector with 3 elements



IMDb Example
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Review 1: “This movie was great!”
Review 2: “This movie was so bad I quit after ten minutes.”
Review 3: “The setting is enchanting and captivating.”

[5, 6, 11, 32]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78]

[5, 6, 11, 32, 0, 0, 0, 0, 0, 0]
[5, 6, 11, 14, 66, 3, 49 , 55, 98, 121]
[31, 12, 2, 77, 33, 78, 0, 0, 0, 0]

Tokenization

Padding

Embedding

Each word is represented by a vector with 3 elements. The 
input is now a 3D tensor of shape (3, 10, 3)

“This” = [0.1, 0.4, 0.6] Missing word: [0, 0, 0]

Number of reviews Length of each 
review

Depth of word embedding: how 
many numbers represent a word
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We need each review to be the same length to feed into the 
network. This either “pads” reviews less than 20 words in 
length with zeros, or truncates reviews longer than 20 words 
to the first 20 words.

Colab notebook

https://drive.google.com/file/d/1ALYadLE6OZJch_Q7Jqu5w1GoafWZ8Pet/view?usp=sharing
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Note that we aren’t fitting an 
RNN yet - this is an MLP 
network. We are first focusing 
on how to use word 
embeddings.

8-dimensional embeddings - one for 
each word

Here we will use the pre-tokenized IMDB data packaged in Keras

Size of vocabulary

Length of sequence



IMDb Example - Word Embeddings

◎ We get an accuracy of about 75%
○ Not bad for only using the first 20 words of a review

◎ Here we are merely flattening the embedded sequences and training a single dense 
layer on top 
○ This treats each word in the input sequence separately, without considering 

inter-word relationships and structure sentence (e.g. it would likely treat both 
"this movie is shit" and "this movie is the shit" as being “negative” reviews). 

○ It would be much better to add recurrent layers or 1D convolutional layers on top 
of the embedded sequences to learn features that take into account each 
sequence as a whole. That's what we will focus on next.
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IMDb Example - Word Embeddings

◎ Now we’ll do the same thing but with pre-trained word embeddings
○ We’ll use GloVe embeddings

◎ We have to download both the raw IMDb reviews and GloVe embeddings 
before running the code
○ I have also imported them into the Google Drive Data folder 
○ IMDb reviews
○ GloVe embeddings

◎ Pre-trained embeddings are meant to perform well on small data sets -
let’s see how well our model does if we only train on 200 reviews
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http://ai.stanford.edu/~amaas/data/sentiment/
https://nlp.stanford.edu/projects/glove/
https://drive.google.com/open?id=1vOGpKKRIkfTyj1-UjBy0An7K8IflPoWH
https://drive.google.com/open?id=1s2J_ahlrAEDaj9d-OttLFRHCNnBIcRqA
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The model quickly starts 
overfitting, unsurprisingly 
given the small number of 
training samples. 
Validation accuracy has 
high variance for 
the same reason, but 
seems to reach high 50s.

The test set accuracy is a 
terrible 56%.



◎ We’ll get into more complicated RNNs, but 
for now let’s build a simple RNN and run it 
on the IMDb data set

◎ SimpleRNN is a layer that can be run in two 
different modes
○ It can return either the full 

sequences of successive outputs for 
each timestep (a 3D tensor of shape 
(batch_size, timesteps, 
output_features)),

○ Or it can return only the last output 
for each input sequence (a 2D tensor 
of shape (batch_size, 
output_features)). 

◎ These two modes are controlled by the 
return_sequences constructor argument.
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◎ We’ll get into more complicated RNNs, but 
for now let’s build a simple RNN and run it 
on the IMDb data set

◎ SimpleRNN is a layer that can be run in two 
different modes
○ It can return either the full 

sequences of successive outputs for 
each timestep (a 3D tensor of shape 
(batch_size, timesteps, 
output_features)),

○ Or it can return only the last output 
for each input sequence (a 2D tensor 
of shape (batch_size, 
output_features)). 

◎ These two modes are controlled by the 
return_sequences constructor argument.

85



◎ We’ll get into more complicated RNNs, but 
for now let’s build a simple RNN and run it 
on the IMDb data set

◎ SimpleRNN is a layer that can be run in two 
different modes
○ It can return either the full 

sequences of successive outputs for 
each timestep (a 3D tensor of shape 
(batch_size, timesteps, 
output_features)),

○ Or it can return only the last output 
for each input sequence (a 2D tensor 
of shape (batch_size, 
output_features)). 

◎ These two modes are controlled by the 
return_sequences constructor argument.
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IMDb Example - Simple RNN

It is sometimes useful to stack 
several recurrent layers one after 
the other in order to increase the 
representational power of a 
network. In such a setup, you 
have to get all intermediate 
layers to return full sequences.
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IMDb Example - Simple RNN
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As a reminder, in lecture 3, our very first 
naive approach to this very dataset got us 
to 88% test accuracy. Our small recurrent 
network doesn't perform very well at all 
compared to this baseline (only up to 85% 
validation accuracy). Part of the problem is 
that our inputs only consider the first 100 
words rather the full sequences -- hence 
our RNN has access to less information 
than our earlier baseline model. 

The remainder of the problem is simply 
that SimpleRNN isn't very good at 
processing long sequences, like text. 
Other types of recurrent layers perform 
much better. We’ll talk about these next.
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