BST 261: Data Science Il
Lecture 12

Word embeddings
Recurrent Neural Networks (RNNs), and LSTMs

Santiago Romero Brufau
Harvard T.H. Chan School of Public Health
Spring 2

Administrivia

Last lab, Friday, May 5th
May 1st, Transformers
Guest lecture next Wednesday, May 3rd: Al Safety

Guest lecture May 8th:

APPLIED)
COGNITIVE PSYCHOLOGY

Research Article

Consequences of erudite vernacular utilized irrespective of
necessity: problems with using long words needlessly

Daniel M. Oppenheimer 24

First published: 31 October 2005 | https://doi.org/10.1002/acp.1178 | Citations: 200

Abstract

Most texts on writing style encourage authors to avoid overly-complex words. However, a
majority of undergraduates admit to deliberately increasing the complexity of their
vocabulary so as to give the impression of intelligence. This paper explores the extent to
which this strategy is effective. Experiments 1-3 manipulate complexity of texts and find
a negative relationship between complexity and judged intelligence. This relationship
held regardless of the quality of the original essay, and irrespective of the participants'
prior expectations of essay quality. The negative impact of complexity was mediated by
processing fluency. Experiment 4 directly manipulated fluency and found that texts in
hard to read fonts are judged to come from less intelligent authors. Experiment 5
investigated discounting of fluency. When obvious causes for low fluency exist that are
not relevant to the judgement at hand, people reduce their reliance on fluency as a cue;
in fact, in an effort not to be influenced by the irrelevant source of fluency, they over-
compensate and are biased in the opposite direction. Implications and applications are
discussed. Copyright © 2005 John Wiley & Sons, Ltd.

That’s the magic of deep learning: turning meaning into vectors, then into geo-
metric spaces, and then incrementally learning complex geometric transformations
that map one space to another. All you need are spaces of sufficiently high dimension-
ality in order to capture the full scope of the relationships found in the original data.

The whole process hinges on a single core idea: that meaning is derived from the pair-
wise relationship between things (between words in a language, between pixels in an image,
and so on) and that these relationships can be captured by a distance function. But note that

Bojan Tunguz
@tunguz
Should we tell him?

a From your Digest

. Nathan Kellert X
Knows English - 1y

| have been working as a fake software
developer by copying and pasting for 9 years.

| want to learn programming properly and
become a real developer. What should | do?

2:57 PM - Apr 5, 2022 - Twitter Web App

Processing text data (better)

Word embeddings

RNNs to LSTMs

Working with
text data

A Sequence Modeling Problem: Predict the Next Word

“This morning | took my cat for a walk”

given these words predict the
next word

Representing Language to a Neural Network

0.1 0.9
X e s pere N/ B~ B
0.6 0.4

Neural networks cannot interpret words Neural networks require numerical inputs
- mmm Massachusetts 65191 Introduction to Deep Learning
I I I I I ;‘;z:"r‘ll;: ;’; @ introtodeeplearningcom W @MITDeeplearning IE

Text Data

Text data can be understood as either a sequence of characters ora
sequence of words
Most common to work at the level of words
Like all other neural networks, we can’t simply input raw text - we must
vectorize the text: transform it into numeric tensors
We can do this in multiple ways:
Segment text into words, and transform each word into a vector
Segment text into characters and transform each character into a
vector
Extract n-grams (overlapping groups of multiple consecutive words or
characters) of words or characters, and transform each n-gram into a
vector

Text Data

The different units into which you break down text (words, characters, n-
grams) are called tokens, and the action of breaking text into tokens is
tokenization

There are multiple ways to associate a vector with a token
One-hot encoding
Token embedding (or word embedding)

10

Tokenization

Tokens ——

Tokenization =

Text
“The cat sat on the mat.”

|

Tokens

“the"’ “Cat”’ “Sat”’ “On", “the))’ “mat"’ “-”

|

0.0
0.5
1.0
the

Vector encoding of the tokens
0.0 04 00 00 10 0.0
10 05 02 05 05 0.0
02 10 10 10 00 00
cat sat on the mat

11

N-grams

Word n-grams are groups of N (or fewer) consecutive words that you can

extract from a sentence. The same concept may also be applied to characters
instead of words.

For example, the sentence "Data science rocks my socks off!" can be
decomposed into a set of 3-grams:

{"Data", "Data science", "science", "science rocks", ""Data science
rocks", "rocks", "rocks my", "science rocks my", "my", "my socks",
"socks", "rocks my socks", "off", "socks off", ""my socks off'"'}

12

N-grams

This set is called a bag of 3-grams, which refers to the fact that it is a set of
tokens, rather than a list or sequence: the tokens have no specific order

This family of tokenization methods is called bag-of-words
Order is not preserved, so the general structure of the sentence is lost
Typically only used in shallow language-processing models

Extracting n-grams is a form of feature engineering that deep learning models
do automatically in another way
13

One-hot Encoding

Most common and most basic way to turn a token
into a vector

We used this with the IMDB data set o P2
Rome = [1,

1. Associate a unique integer index with every word

2. Then, turn the integer index i into a binary vector of size
N (the size of the vocabulary, or number of words in the
set) France

I
~
o
~

The vector is all 0s except for the ith entry, which is 1

14

One-hot Hashing

A variant of one-hot encoding is the one-hot hashing trick

Useful when the number of unique tokens is too large to handle
explicitly

Instead of explicitly assigning an index to each word and keeping a
reference of these indices in a dictionary, you can hash words into
vectors of fixed size

15

One-hot Hashing

Main advantage: saves memory and allows generation of tokens before
all of the data has been seen

Main drawback: hash collisions
Two different words end up with the same hash
The likelihood of this decreases when the dimensionality of the
hashing space is much larger than the total number of unique
tokens being hashed

16

Word Embeddings

Another common and powerful way to
associate a vector with a word is the use
of dense word vectors or word
embeddings

Word embeddings are dense, low-
dimensional floating-point vectors

Are learned from the data rather than
hard coded

256,512 and 1024-dimensional word
embeddings are common

iilrg

One-hot word vectors:
- Sparse

- High-dimensional

- Hardcoded

Word embeddings:

- Dense

- Lower-dimensional
- Learned from data

17

Word Embeddings

There are 2 ways to obtain word embeddings:

1. Learn word embeddings jointly with the main task you care about

Start with random word vectors and then learn word vectors in the same
way you learn the weights of the network

2. Use pre-trained word embeddings

Load into your model word embeddings that were precomputed using a
different machine-learning task than the one you’re trying to solve

18

Learning Word Embeddings

It’s easy to simply associate a vector with a word randomly - but this
results in an embedding space without structure, and things like
synonyms that could be interchangeable will have completely different

embeddings

This makes it difficult for a deep neural network to make sense of these
representations

19

Learning Word Embeddings

It is better for similar words to have similar embeddings, and dissimilar
words to have dissimilar embeddings

We can, for example, relate the L2 distance to the similarity of the words
with a smaller distance meaning the words are similar and bigger
distances indicating very different words

Spain
\ r Y
Italy \Hndrid
Germany ——__ ™ B 1
walked Berlin Wolf x
x Tiger

Turkey \
Ankara

Russia el
M
Canada -~ QOttawa oscow Dﬂg = % Cat

Japan ————— Tokyo

Vietnam o Hanoi
China Beijing 0 X

v

Male-Female Verb tense Country-Capital

Word Embeddings

Common examples of useful geometric transformations are “gender” and “plural”

vectors:
Adding a “female” vector to the vector “king” will result in the vector “queen”

Adding the “plural” vector to the vector “elephant” will result in the vector
“elephants”

Is there a word-embedding space that would perfectly map human language and be

used in any natural-language processing task?
Maybe, but we haven’t discovered it yet
Very complicated - many different languages that are not isomorphic due to

specific cultures and contexts
A “good” word-embedding space depends on the task

21

Pre-trained Word Embeddings

Similar to using pre-trained convolutional bases, we can use pre-trained word
embeddings
Particularly useful when your sample size is small
Load embedding vectors from a precomputed embedding space that is highly
structured with useful properties
Captures generic aspects of language structure
These embeddings are typically computed using word-occurrence statistics:
Observations about what words co-occur in sentences or documents
Various word-embedding methods exist:
Word2vec algorithm (developed by Tomas Mikolov at Google in 2013)
GloVe: Global Vectors for Word Representation (developed by researchers at
Stanford in 2014)
Both embeddings can be used in Keras

22

Word2vec

Mikolov et al. introduce the word2vec
algorithm which is actually a collection of
different models
Continuous bag of words (CBOW)
Skip-gram with negative sample
(SGNS)
Key insight: simple linear model
trained on tons of data works much
better than fancy nonlinear model
that was difficult to train

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

wit-2) j 4 w(t-2)
wit-1) \ wit-1)
'\‘SUM
J—»{ w(t) w(t) H

w(t+1)

w(t+2)

P yANS
i// \ﬁ\

cBOwW Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

23

https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf

GloVe

.
GloVe: Global vectors for word [Bdion o bl i b b i e e il)
—_— an average human's vocabulary. For example, here are the closest words to the target word frog:
o. frog
1. frogs

representation

3. litoria
4. leptodactylidae

Developed by researchers at =

7. eleutherodactylus

Stanford in 2014 -

The similarity metrics used for nearest neighbor evaluations produce a single scalar that quantifies the relatedness of two words. This simplicity
can be problematic since two given words almost always exhibit more intricate relationships than can be captured by a single number. For

.
O p e n - S O u rC e p rOJ e Ct at Sta n fo rd example, man may be regarded as similar to woman in that both words describe human beings; on the other hand, the two words are often

considered opposites since they highlight a primary axis along which humans differ from one another.

Highlights
1. Nearest neighbors
The Euclidean distance (or cosine similarity) between two word vectors provides an effective method for measuring the linguistic or semantic
efevanl words that lie outside

7. eleutherodactylus

3. litoria 4. leptodactylidae 5. rana

Has similarities to other word e i e o Y 53 i iy i s e
than a single number to the word pair. A natural and simple candidate for an enlarged set of discriminative numbers is the vector difference
between the two word vectors. GloVe is designed in order that such vector differences capture as much as possible the meaning specified by

the juxtaposition of two words.

embedding methods

¥
{ Caterpillr.. _

i “ i i ,’ i woman rysler...
Word2vec is a “predictive T e A s | DU /
' 4 “ Bl ~Honolulu strong <
H 1 | S || (T e
m Od el W h e re a S G love I S a f‘, rl/ i Wl Mart) 95623 - — — — — S0 LA /Eo%ee?s:
“ b d ” d l i l’s;') e TT7| | 92804 - — — ~ —anaheim s:":’a(' ,’:/:/ darker — ~ -
count-based” mode o
city - zip code comparative - superlative

man - woman company - ceo

https://nlp.stanford.edu/projects/qglove/

https://www.aclweb.org/anthology/D14-1162
https://www.quora.com/How-is-GloVe-different-from-word2vec
https://www.quora.com/How-is-GloVe-different-from-word2vec
https://nlp.stanford.edu/projects/glove/

@ Arindam Paul, Ph.D. X
' Researcher in Machine Learning, Northwestern University - Author has 385 answers and 961.4K
answer views - 3y

Differences:

1. Presence of Neural Networks: GloVe does not use neural networks while word2vec
does. In GloVe, the loss function is the difference between the product of word
embeddings and the log of the probability of co-occurrence. We try to reduce that
and use SGD but solve it as we would solve a linear regression. While in the case of
word2vec, we either train the word on its context (skip-gram) or train the context
on the word (continuous bag of words) using a 1-hidden layer neural network.

2. Global information: word2vec does not have any explicit global information
embedded in it by default. GloVe creates a global co-occurrence matrix by
estimating the probability a given word will co-occur with other words. This
presence of global information makes GloVe ideally work better. Although in a
practical sense, they work almost similar and people have found similar
performance with both.

22.8K views - View upvotes

25

How to train embeddings

’huge

‘ The ‘ oak ’ trees ‘ are ‘ ancient l and
Target
(J .
Context window
The context
Target Target window slides
along the text
trees The
oak
are
ancient

The

are

0ak

0

0

Input layer

D =[1xV]

VXN

Hidden layer
d =[1xN]

== the word
embedding

NxV

tree

0.00

0.03

0.00

0.00

0.23

0.60

0.13

0.00

0.01

0.00

0.00

Output layer
D =[1xV]
(softmax)

26

How to train embeddings

’ huge

‘ The ‘ oak ’ trees ‘ are ‘ ancient ‘ and
Target
(J .
Context window
The context
Target Target window slides
along the text
trees The
oak
are
ancient

0

0

Input layer
D =[1xV]

VXN

Hidden layer
d = [1xN]

== the word
embedding

NxV

0.00

0.03

0.00

0.00

0.23

0.60

0.13

0.00

0.01

0.00

0.00

Output layer
D =[1xV]
(softmax)

27

*2vec

Distributed Representations of Sentences and Documents

Quoc Le
Tomas Mikolov

Google Inc, 1600 Amphitheatre Parkway, Mountain V

Abstract

Many machine learning algorithms require the
input to be represented as a fixed-length feature
vector. When it comes to texts, one of the most
common fixed-length features is bag-of-words.
Despite their popularity, bag-of-words features
have two major weaknesses: they lose the order-
ing of the words and they also ignore semantics
of the words. For example, “powerful,” “strong™
and “Paris” are equally distant. In this paper, we

N

EDJALSTHETHINGS

Ski

dna2vec: wtions of

One of the ubiquitor simzgensrator.net
Unfortunately, the straightforward vector encoding of k-mer as a one-hot vector is vulnerable to the
curse of dimensionality. Worse yet, the distance between any pair of one-hot vectors is equidistant. This
is particularly problematic when applying the latest machine learning algorithms to solve problems in
biological sequence analysis. In this paper, we propose a novel method to train distributed representations
of variable-length k-mers. Our method is based on the popular word embedding model word2vec, which
is trained on a shallow two-layer neural network. Our experiments provide evidence that the summing
of dna2vec vectors is akin to nucleotides concatenation. We also demonstrate that there is correlation
between Needleman-Wunsch similarity score and cosine similarity of dna2vee vectors.

‘ter k-mer components.

28

cui2vec: embeddings for medical concepts

Map of All Concepts
Colored by Data Source

Clinical Concept Embeddings Learned from Massive
Sources of Multimodal Medical Data

Andrew L. Beam Benjamin Kompa Inbar Fried
Harvard Medical School University of North Carolina University of North Carolina

Nathan Palmer Xu Shi Tianxi Cai
Harvard Medical School Harvard School of Public Health Harvard School of Public Health

Isaac 8. Kohane
Harvard Medical School

® Cincal Notes # Insurance Claims @ Mutiple « PMC Articies.

29

Recurrent Neural
Networks (RNNs)

Given an image of a ball,
can you predict where it will go next?

- /
-
\

Given an image of a ball,
can you predict where it will go next?

Neural Networks

So far we have seen:
Deep feedforward networks (MLPs)
Map a fixed length vector to a fixed length scalar/vector
Use case: classical machine learning
CNNS
Map a fixed length matrix/tensor to a fixed length scalar/vector
Use case: image recognition

RNNs
Map a sequence of matrices/tensors to a scalar/vector
Map a sequence to a sequence
Use case: natural language processing (NLP)

33

NLP

MACHINE TRANSLATION
The challenge of language for computers: =1

Computers are built to process numbers
.

Language isn’t easily represented by numbers

How can we represent human language in a
computable fashion?

3

Applications: machine translation, text classification, E9
information retrieval, sentiment analysis and many @ """
more

You already saw one example: classifying IMDb

movie reviews as either positive or negative

Sentiment Analysi
Algorithm

MLPs == RNNS

RNNs are a natural extension of MLPs
MLPs are “memoryless”, but often we need knowledge of the past
sequence of events to predict the future

Inputs Output Probability

MLP X y Ply[¥)

RNN [Xla Xz’ X3) eeey Xt] y P(y|xl’ X2’ X3’ sy Xt)

MLPs == RNNSs

Recall that the first hidden layer for an MLP

is given by h =f(XW + b) where f() is the
activation function and W is the weight matrix
in the hidden layer, b is the bias term,

and U is the weight matrix in the output layer

36

MLPs == RNNSs

RNNs add the concept of “state” to traditional

neural networks ‘

U
To incorporate the notion of time we will

index the hidden layer with t and feed it X: -

h, = f(X,W + b) T w

MLPs == RNNSs

To incorporate information from the previous

state we will make the following modification: ‘
h,=f(XW+b) =—= h—f(XW+ht1U+b ﬁ U
1
Inputat Hidden state
timet from previous
time point ﬁ W

This is equivalent to connecting the ‘

hidden state to itself

38

RNN Backprop

How do we backprop through something with

a loop? .

U

Have to backprop through depth and time @ﬁ

W

This is similar to what we saw with MLPs,
but we aren’t going to go through it here

39

RNNs

“Unrolled” RNN

output t1 output t output t+1

A A '}

\

output_t=

activation(<:|
—_— - Weinput_t + -

State t Usstate_t+ State t+1
bo)

A

input t-1 inputt input t+1

40

Neurons with Recurrence

output ¢ Yo V1)

] | | |

C) | &

I I I I

input

vector Xt X0 X1 X2
N\
Ve = f(x¢, he—q)
OUtpUt input past memory
mmm Massachuselts 65191 Introduction to Learni
I I I I | ':3,'::,';;:, @ introtodccple;'ning.cor:n %MlméggLeaming 1242

41

Neurons with Recurrence

output Jy Yo Y1 Y2

e I | I

ho
recurrent cell
e

I I I I

input

vector %Xt %0 ~ 2
N\
Ve = f(x¢, he—q)
output input past memory
mmm Massachusetts 65191 Introduction to Learni
lIIII ::Z::;‘;;; 2] inmtodecplearning‘cor:n %Mlmgszeamlng 12422

42

RNN State Update and Output

output vector y’t

—[RNN ”

I

input vector Xt

OutputVector
a T
Y Whyht

Update Hidden State
he = tanh(Wpph,_y + Wipx,)

Input Vector

Xt

mmm Massachusetts
I l Institute of

Technology

65191 Introduction to Deep Learning
@ introtodeeplearningcom W @MITDeeplLearning

124122

43

RNNs

There are many ways to configure the input = output mapping

one to one one to many many to one many to many many to many

->:|o b e = ol (]

45

RNNs

many to one
Ex:
T Sentiment
Analysis
| R

Positive

Negative

46

RNNs

many to many Sy
- Initial :

1] {(Blank) =
Ex: :, State :

Translation, :
t ot automated the' | "cat” et i
response S L L SUUTIEE SO SO S

Tro - D)

ENCODER Reply

[ERS 511

! [

Are you free tomorrow?

thought vector

<START>

Incoming Email DECODER

RNNs: Backpropagation Through Time

——> Forward pass .

Ly Ly L, L,
t t t t
Ve Yo Y1 Y2 Ve
1 Why I Why 1 Why I Why I

65191 Introduction to Deep Learning

I mmmmmmmmm ™ _
I III ;:;,“,'::.2;;) introtodeeplearning.com W @MITDeepleamning

RNNs: Backpropagation Through Time

= Forward pass
<—— Backward pass L

L, Li I Ls

t v t v 1 v 1 v

Ve Yo b2} Y2 - Ve
A

WhyI v WhyI \ WhyI \ 4 whyI v

X
Z
Z
Il
J
ks
-
_J
E A
=R
"
_ “)
I
S
—

™M oct D ~
l I I If instihutoot it ucron o reariog Mozer Complex Systems 1989. 1/24/22

I 1 ; .
II 723,':.'3'.23, @ introtodeeplearningcom W @MITDeeplearning

RNNs

High-level takeaways:
RNNs provide a way to handle sequence data where the order of events is
important

“Simple” modification to MLP model

RNNs maintain a “state” that reflects current configuration of the “world”

51

RNNs

High-level takeaways:
RNNs provide a natural way to “update” your beliefs about the world as

new information arrives

Really flexible and can model many different scenarios that get
weird/complicated quickly

CNNs = hard to understand but easy to implement; RNNs = easy to
understand but hard to implement

52

Applications

Document and time series classification e.g. identifying the topic of an
article or the author of a book

Time series comparisons e.g. estimating how closely related two
documents are

Sentiment analysis

Time series forecasting e.g. predicting weather (something that needs
major improvement for Boston...)

Sequence-to-sequence learning e.g. decoding an English sentence into
Turkish

53

Problems with RNNs

Problems with RNNSs

Recall the formula for a generic RNN:
h,=f(X,\W + h,_,U +b)

What happens for really long sequences during backprop?
You multiply by the matrix U repeatedly
Largest eigenvalue > 1, gradient—— oo (explodes)
Largest eigenvalue < 1, gradient —— 0 (vanishes)

This is known as the vanishing or exploding gradient problem

55

Fixing RNNSs

Sepp Hochreiter and Jirgen Schmidhuber proposed the long short term
memory (LSTM) hidden unit in 1997

LSTMs selectively modify the inputs to produce “well-behaved” outputs,
fixing the gradient issues

Can model very long sequences without having the gradients vanish or

explode
R -
A GAAD A]
& ® ©

The repeating module in an LSTM contains four interacting layers.

56

https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf

Fixing RNNSs

Gated Recurrent Network (GRU)

Relatively new (2014), introduced by

Choetal. B
Combined aspects of the LSTM

hidden unit

Performance is on par with LSTM but
computationally more efficient

We’ll dig into the details of these two

new units

57

https://arxiv.org/pdf/1406.1078v3.pdf

Long Short Term
Memory (LSTM)

An “unrolled” RNN

N 0 0
A A

I

= —> —

6 $<l> o

RNN where the output h; only depends on the input from X, and X,
(The relevant information needed at h; comes from X, and X,)
The gap between relevant information and the place it is needed is small

& & O
R I

5 6

http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/

®)
!
A

@—>
®

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN where the output h,,, is dependent on data inputs X, and X, that are too
far for the gradient to carry

This is an example of a long-term dependency - RNNs struggle to learn to

make connections when there are large gaps between the relevant
information and where it is needed
A

A
I

& ® ®
I

bbb

60

Simple, “vanilla” RNN:

|
©

N\ O B
X © >
Eanb>
A [Mg A
[o] [tanh] [0]
—
J J

RNN with LSTM units: [
|
©

[]

Meural Network
Layer

Pointwise
Operation

Concatenate

Copy

61

62

LSTMs were explicitly designed to avoid
the long-term dependency problem
The key to LSTMs is the ability to let — ®
certain information through and carry it

until it is deemed no longer useful (whic

may not happen)

Information is carried through the

sequence in the cell state, which acts as

a conveyor belt or highway of

information (memory of the network) —®—

Information is kept or forgotten by ?
ci

passing through gates (neural netsthat — ——
regulate the flow of information from one
time step to the next

63

Gates

Gates control which information is let through

They are composed of a sigmoid neural net layer
and a pointwise multiplication operation

The sigmoid layer outputs numbers between 0
and 1, representing how much information
should be let through

1 =all information, 0 = no information

64

Step 1: Forget Gate - Determine how much of the previous state should
affect the current state based on the current observed input x,

}‘Ii] f,g =0 (I‘r’?f [h;_l y .'I_fg] + b‘f)
h;_l

Ty

Step 2: Update Cell State - First determine which values we will update and by
how much (gate i), then create a list of candidate values that we will add to the
current state (C,) based on the current input (x,) and the previous output (h, ;).

=0 (1_,.1_,1-&.[};_#_]?;1::] + b-i)

C} = tanh(We-[hi—1,2¢] + be)

ht—l

A

65

Step 3: Execute the Update - update the cell state C, ; to C..

f’T ”{"(jé Ci = fr % Ceq +ir % Cy

Step 4: Compute Unit Output - determine which parts of the cell state will be
used as unit output. Output is a filtered version of the cell state.

he A
@nb> or =0 (W, [hi—1,2¢] + by)
04 Q)
h; = oy * tanh (C}
s (0 | he t t (f)

Why tanh?

To overcome the vanishing/exploding
gradient problem

1 : "
FO rc Sigmoid Leaky RelLU l'
o(z) = —ies max(0.1z,)
tanh Maxout
tanh(m) = N max(wiz + by, w3 x + by)
ReLU ELU
max(0, z) {m z=20
. afe” —1) =

xr <0

67

LSTM Variants

The steps we went through are for the standard, “normal” LSTM
There are several variations - see blog post link from previous slide
Encoder-decoder LSTMS led to the emergence of the

Attention Mechanism
Selectively concentrates on a few relevant things while ignoring others
Think of an encoder as part of a neural net that reads in a sequence,

tries to summarize it (encode a context vector), and passes it to the
decoder

The decoder translates the input from the encoder

The Attention Mechanism overcame shortcomings of encoder-
decoder LSTMs and led to huge breakthroughs in NLP

68

IMDb Example

IMDb Example

Recall from a previous lecture:

The IMDb data set is a set of movie reviews that have been labeled as either positive or
negative, based on the text content of the reviews

Training set: 25,000 either positive or negative movie reviews that have each
been turned into a vector of integers
We'll see how to actually do this later in the course
Each review can be of any length
Only the top 10,000 most frequently occurring words are kepti.e. rare words
are discarded
Each review includes a label: 0 = negative review and 1 = positive review

Testing set: 25,000 either positive or negative movie reviews, similar to the
training set

70

https://www.kaggle.com/utathya/imdb-review-dataset

IMDb Example - Word Embeddings

Keras has a function that enables learning word-embeddings: the
embedding layer

Basically a dictionary that maps integer indices (that represent words) to
dense vectors

It takes integers as input, looks up the integers in an internal dictionary,
and returns the associated vectors

Word index ——» Embedding layers Corresponding word
vector

71

IMDb Example - Word Embeddings

Input: 2D tensor of integers of shape (samples, sequence_length)

Note that you need to select a sequence length that is the same for all
sequences

If a sequence is shorter than the set sequence length, pad the remaining
entries with 0s

If a sequence is longer than the set sequence length, truncate the
sequence

72

IMDb Example

Review 1: “This movie was great!” [5, 6,11, 32]
Review 2: “This movie was so bad | quit after ten minutes.” > [5,6,11, 14,66, 3,49, 55,98, 121]

Review 3: “The setting is enchanting and captivating.” [31,12, 2,77, 33, 78]

73

IMDb Example

Review 1: “This movie was great!” [5, 6,11, 32]
Review 2: “This movie was so bad | quit after ten minutes.” > [5,6,11, 14,66, 3,49, 55,98, 121]

Review 3: “The setting is enchanting and captivating.” [31,12, 2,77, 33, 78]

@ Padding

[5,6,11,32,0,0,0,0,0, 0]
[5,6,11, 14, 66, 3,49, 55,98, 121]
[31,12,2,77,33,78,0,0,0, 0]

74

IMDb Example

Review 1: “This movie was great!” [5, 6,11, 32]
Review 2: “This movie was so bad | quit after ten minutes.” > [5,6,11, 14,66, 3,49, 55,98, 121]

Review 3: “The setting is enchanting and captivating.” [31,12, 2,77, 33, 78]

@ Padding
Embedding

§ [5,6,11,32,0,0,0,0,0, 0]
b % [5,6,11, 14, 66, 3,49, 55,98, 121]
[31,12,2,77,33,78,0,0,0, 0]

Each word is represented by a vector with 3 elements

75

IMDb Example

Review 1: “This movie was great!” [5, 6,11, 32]
Review 2: “This movie was so bad | quit after ten minutes.” > [5,6,11, 14,66, 3,49, 55,98, 121]

Review 3: “The setting is enchanting and captivating.” [31,12, 2,77, 33, 78]

“This”=[0.1, 0.4, 0.6] Missing word: [0, 0, 0] @ dd
/// Padding
A

Embedding

fid 54— § [5,6,11,32,0,0,0,0,0,0]
e < :: 5, 6,11, 14, 66, 3,49, 55, 98, 121]

[31,12,2,77,33,78,0,0,0,0]

Each word is represented by a vector with 3 elements. The
input is now a 3D tensor of shape (3, 10, 3)
X \ Depth of word embedding: how

, many numbers represent a word
Number of reviews Length of each

review 76

Number of words to consider as features
max_ features = 10000

1

2

3

4 # Cut texts after this number of words

5 # (among top max features most common words)

6 maxlen = 20

7

8 # Load the data as lists of integers.

9 (x_train, y train), (x_test, y test) = imdb.load data(num words=max_ features)
10

11 # This turns our lists of integers into a 2D integer tensor

12 # of shape (samples, maxlen)

13 x_train = preprocessing.sequence.pad_sequences(x train, maxlen=maxlen)
14 x_test = preprocessing.sequence.pad sequences(x test, maxlen=maxlen)

Y

We need each review to be the same length to feed into the
network. This either “pads” reviews less than 20 words in
length with zeros, or truncates reviews longer than 20 words
to the first 20 words.

Colab notebook

https://drive.google.com/file/d/1ALYadLE6OZJch_Q7Jqu5w1GoafWZ8Pet/view?usp=sharing

Here we will use the pre-tokenized IMDB data packaged in Keras

1 model = keras.Sequential([

8-dimensional embeddings - one for

2 # We specify the maximum input length to our Emb ! ayer

3 # so we can later flatten the e nputs eaCh WOFd

4 layers.Embedding (10000, 8, input_length = maxlen), —

5 \ Length of sequence

6 # After the Embedding layer,

7 # our activations have shape (samples, maxlen, 8). Size ofvocabu[ary

8

9 # We flatten the 3D tensor of embeddings

10 # into a 2D tensor of shape (samples, maxlen * 8)

ik layers.Flatten(),

L2 . Note that we aren’t fitting an
13 # We add the classifier on top L.

14 layers.Dense(l, activation='sigmoid') < RNN yet - thisis an MLP
15 1) network. We are first focusing
16 _ on how to use word

17 model.compile(loss = 'binary crossentropy', .

18 optimizer = tf.keras.optimizers.RMSprop(), embeddmgs'

19 metrics = ['accuracy'])

20

21

22 history = model.fit(x_train, y train,

23 epochs = 10,

24 batch_size = 32,

25 validation_split = 0.2)

78

IMDb Example - Word Embeddings

We get an accuracy of about 75%
Not bad for only using the first 20 words of a review

Here we are merely flattening the embedded sequences and training a single dense
layer on top
This treats each word in the input sequence separately, without considering
inter-word relationships and structure sentence (e.g. it would likely treat both
"this movie is shit" and "this movie is the shit" as being “negative” reviews).
It would be much better to add recurrent layers or 1D convolutional layers on top
of the embedded sequences to learn features that take into account each
sequence as a whole. That's what we will focus on next.

79

IMDb Example - Word Embeddings

Now we’ll do the same thing but with pre-trained word embeddings
We’ll use GloVe embeddings

We have to download both the raw IMDb reviews and GloVe embeddings
before running the code

| have also imported them into the Google Drive Data folder

IMDDb reviews

GloVe embeddings

Pre-trained embeddings are meant to perform well on small data sets -
let’s see how well our model does if we only train on 200 reviews

80

http://ai.stanford.edu/~amaas/data/sentiment/
https://nlp.stanford.edu/projects/glove/
https://drive.google.com/open?id=1vOGpKKRIkfTyj1-UjBy0An7K8IflPoWH
https://drive.google.com/open?id=1s2J_ahlrAEDaj9d-OttLFRHCNnBIcRqA

from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_ sequences
import numpy as np

maxlen = 100 # We will cut reviews after 100 words

training samples = 200 # We will be training on 200 samples

validation_samples = 10000 # We will be validating on 10000 samples

max_words = 10000 # We will only consider the top 10,000 words in the dataset

@ oUW N

=
o v

tokenizer = Tokenizer (num words=max words)
tokenizer.fit on texts(texts)
sequences = tokenizer.texts_to_sequences(texts)

e
R N

word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))

= e
o U

17 data = pad sequences(sequences, maxlen=maxlen)

18

19 labels = np.asarray(labels)

20 print('Shape of data tensor:', data.shape)

21 print('Shape of label tensor:', labels.shape)

22

23 # Split the data into a training set and a validation set

24 # But first, shuffle the data, since we started from data

25 # where sample are ordered (all negative first, then all positive).
26 indices = np.arange(data.shape[0])

27 np.random.shuffle(indices)

28 data = data[indices]

29 labels = labels[indices]

30

31 x_train = data[:training samples]

32 y_train = labels[:training samples]

33 x_val = data[training samples: training samples + validation samples]
34 y val = labels[training samples: training samples + validation_samples]

Found 88582 unique tokens.
Shape of data tensor: (25030, 100)
Shape of label tensor: (25030,)

Heather's directory - change to your path
glove dir = 'drive/My Drive/Teaching/BST 261/2021/261StudentFolder/In-class examples/Data/glove/'

1
2
3
4 embeddings index = {}

5 f = open(os.path.join(glove_dir, 'glove.6B.100d.txt'))
6 for line in f:

7 values = line.split()

8 word = values[0]

9 coefs = np.asarray(values[l:], dtype='float32')
10 embeddings_index[word] = coefs

11 f.close()

12

13 print('Found %s word vectors.' % len(embeddings_index))

1 embedding _dim = 100

embedding matrix = np.zeros((max words, embedding dim))
for word, i in word_index.items():
embedding vector = embeddings index.get(word)
if i < max words:
if embedding vector is not None:
Words not found in embedding index will be all-zeros.
embedding matrix[i] = embedding vector

O 0 ~J 0 U & W N

2.00 -~ Training Loss

The model quickly starts 5 Validation Loss

overfitting, unsurprisingly 150

given the small number of 1 \

training samples. S T \

Validation accuracy has -

high variance for -

the same reason, but 0.00

seems to reach high 50s. 10

The test set accuracy is a -

terrible 56%. g os T S ——
g . Validation Accuracy

0.6

05

Epochs

We’ll get into more complicated RNNs, but
for now let’s build a simple RNN and run it
on the IMDb data set

SimpleRNN is a layer that can be run in two
different modes
It can return either the full
sequences of successive outputs for
each timestep (a 3D tensor of shape
(batch_size, timesteps,
output_features)),
Or it can return only the last output
for each input sequence (a 2D tensor
of shape (batch_size,
output_features)).

These two modes are controlled by the
return_sequences constructor argument.

1 model = keras.Sequential([

2 layers.Embedding (10000, 32),
3

4 layers.SimpleRNN(32),

> 1)

6

7 model.summary ()

Model: "sequential 2"

Layer (type) Output Shape Param #
embedding 2 (Embedding) (None, None, 32) 320000
simple_rnn (SimpleRNN) (None, 32) 2080
Total params: 322,080

Trainable params: 322,080

Non-trainable params: 0

1 model = keras.Sequential([

2 layers.Embedding (10000, 32),

3

4 layers.SimpleRNN(32, return_sequences=True),

51)

6

7 model.summary()
Model: "sequential"
Layer (type) Output Shape Param #
embedding (Embedding) (None, None, 32) 320000
simple_rnn (SimpleRNN) (None, None, 32) 2080

Total params: 322,080
Trainable params: 322,080
Non-trainable params: 0

84

We’ll get into more complicated RNNs, but
for now let’s build a simple RNN and run it

on the IMDb data set

SimpleRNN is a layer that can be run in two

different modes

It can return either the full
sequences of successive outputs for
each timestep (a 3D tensor of shape

(batch_size, timesteps,
output_features)),

Or it can return only the last output
for each input sequence (a 2D tensor

of shape (batch_size,
output_features)).

These two modes are controlled by the
return_sequences constructor argument.

1 model = keras.Sequential([

2 layers.Embedding (10000, 32),
&

4 layers.SimpleRNN(32),

> 1)

6

7 model.summary ()

Model: "sequential 2"

Layer (type) Output Shape Param #
embedding 2 (Embedding) (None, None, 32) 320000
simple_rnn (SimpleRNN) (None, 32) 2080
Total params: 322,080

inable params: 322,080

Non-trejnable params: 0

1 model = ke Sequential([

2 layers.Embeddl 10000, 32),

3

4 layers.SimpleRNN(sz,Ireturn_sequences=True|,

51)

6

7 model.summary()
Model: "sequential"
Layer (type) Output Shape Param #
embedding (Embedding) (None, None, 32) 320000
simple_rnn (SimpleRNN) (None, None, 32) 2080

Total params: 322,080
Trainable params: 322,080
Non-trainable params: 0

85

We’ll get into more complicated RNNs, but
for now let’s build a simple RNN and run it
on the IMDb data set

SimpleRNN is a layer that can be run in two
different modes
It can return either the full
sequences of successive outputs for
each timestep (a 3D tensor of shape
(batch_size, timesteps,
output_features)),
Or it can return only the last output
for each input sequence (a 2D tensor
of shape (batch_size,
output_features)).

These two modes are controlled by the
return_sequences constructor argument.

1 model = keras.Sequential([

2 layers.Embedding (10000, 32),
&

4 layers.SimpleRNN(32),

> 1)

6

7 model.summary ()

Model: "sequential 2"

Layer (type) Output Shape Param #
embedd;;g_z (Embedding) (None, None, 32) 320000____
simple_rnn (SimpleRNN) (None, 32) 2080
Total params: 322,080

Trainable params: 322,080

Non-trainable params: 0

1 model = keras. uential ([

dding (10000, 32),
ayers.SimpleRNN(32, return_sequences=True),

7 model.summary()
Model: "sequential"
Layer (type) Output Shape Param #
embedding (Embedding) (None, None, 32) 320000
simple_rnn (SimpleRNN) (None, None, 32) 2080

Total params: 322,080
Trainable params: 322,080
Non-trainable params: 0

86

IMDb Example - Simple RNN

1 model = keras.Sequential([
layers.Embedding (10000,

2

3

4 layers.SimpleRNN(32, return_sequences=True),
5 layers.SimpleRNN(32, return_sequences=True),
6 layers.SimpleRNN(32, return_sequences=True), <
7 layers.SimpleRNN(32), # This last layer only returns the last outputs.
8

9

10

1)
model.summary ()

Model: "sequential 4"

32),

A A A

Layer (type) Output Shape Param #
embedding 4 (Embedding) (None, None, 32) 320000
simple rnn_ 2 (SimpleRNN) (None, None, 32) 2080
simple rnn_ 3 (SimpleRNN) (None, None, 32) 2080
simple rnn 4 (SimpleRNN) (None, None, 32) 2080
simple_rnn_5 (SimpleRNN) (None, 32) 2080

Total params: 328,320
Trainable params: 328,320
Non-trainable params: 0

It is sometimes useful to stack
several recurrent layers one after
the other in order to increase the
representational power of a
network. In such a setup, you
have to get all intermediate
layers to return full sequences.

87

IMDb Example - Simple RNN

1 model = keras.Sequential([
layers.Embedding(max_ features, 32),

2

3

4 layers.SimpleRNN(32),

5

6 layers.Dense(1l, activation='sigmoid')
7

1)

8

9 model.compile(optimizer = tf.keras.optimizers.RMSprop(),
10 loss='binary crossentropy',

11 metrics=['accuracy'])

12

13 history = model.fit(input train, y train,

14 epochs=10,

15 batch_size=128,

16 validation split=0.2)

88

As a reminder, in lecture 3, our very first
naive approach to this very dataset got us
to 88% test accuracy. Our small recurrent
network doesn't perform very well at all
compared to this baseline (only up to 85%
validation accuracy). Part of the problem is
that our inputs only consider the first 100
words rather the full sequences -- hence
our RNN has access to less information
than our earlier baseline model.

The remainder of the problem is simply
that SimpleRNN isn't very good at
processing long sequences, like text.
Other types of recurrent layers perform
much better. We'll talk about these next.

Loss

Accuracy

0.6

05

0.4

03

0.2

01

1.00

0.90

0.85

0.80

0.75

0.70

Training Loss
Validation Loss

4 G
Epochs

Training Accuracy

Validation Accuracy || s -

2 B 6
Epochs

10

89

	Slide 1: BST 261: Data Science II Lecture 12 Word embeddings Recurrent Neural Networks (RNNs), and LSTMs Santiago Romero Brufau Harvard T.H. Chan School of Public Health Spring 2
	Slide 2: Administrivia
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Processing text data (better)
	Slide 7
	Slide 8
	Slide 9: Text Data
	Slide 10: Text Data
	Slide 11: Tokenization
	Slide 12: N-grams
	Slide 13: N-grams
	Slide 14: One-hot Encoding
	Slide 15: One-hot Hashing
	Slide 16: One-hot Hashing
	Slide 17: Word Embeddings
	Slide 18: Word Embeddings
	Slide 19: Learning Word Embeddings
	Slide 20: Learning Word Embeddings
	Slide 21: Word Embeddings
	Slide 22: Pre-trained Word Embeddings
	Slide 23: Word2vec
	Slide 24: GloVe
	Slide 25
	Slide 26: How to train embeddings
	Slide 27: How to train embeddings
	Slide 28: *2vec
	Slide 29: cui2vec: embeddings for medical concepts
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Neural Networks
	Slide 34: NLP
	Slide 35: MLPs RNNs
	Slide 36: MLPs RNNs
	Slide 37: MLPs RNNs
	Slide 38: MLPs RNNs
	Slide 39: RNN Backprop
	Slide 40: RNNs
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: RNNs
	Slide 46: RNNs
	Slide 47: RNNs
	Slide 49
	Slide 50
	Slide 51: RNNs
	Slide 52: RNNs
	Slide 53: Applications
	Slide 54
	Slide 55: Problems with RNNs
	Slide 56: Fixing RNNs
	Slide 57: Fixing RNNs
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Gates
	Slide 65
	Slide 66
	Slide 67: Why tanh?
	Slide 68: LSTM Variants
	Slide 69
	Slide 70: IMDb Example
	Slide 71: IMDb Example - Word Embeddings
	Slide 72: IMDb Example - Word Embeddings
	Slide 73: IMDb Example
	Slide 74: IMDb Example
	Slide 75: IMDb Example
	Slide 76: IMDb Example
	Slide 77
	Slide 78
	Slide 79: IMDb Example - Word Embeddings
	Slide 80: IMDb Example - Word Embeddings
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87: IMDb Example - Simple RNN
	Slide 88: IMDb Example - Simple RNN
	Slide 89

